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Abstract: With the continuous scaling of integrated circuit technologies, design for 

manufacturability (DFM) is becoming more critical, yet more challenging. Alongside, recent 

advances in machine learning have provided a new computing paradigm with promising applications 

in VLSI manufacturability. In particular, generative learning - regarded among the most interesting 

ideas in present-day machine learning - has demonstrated impressive capabilities in a wide range of 

applications. This paper surveys recent results of using generative learning in VLSI manufacturing 

modeling and optimization. Specifically, we examine the unique features of generative learning that 

have been leveraged to improve DFM efficiency in an unprecedented way; hence, paving the way 

to a new data-driven DFM approach. The state-of-the-art methods are presented, and 

challenges/opportunities are discussed. 
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1. Introduction 

Recent advances in machine learning have 

dramatically altered the perception of computing 

through providing the ability to learn without 

traditional explicit programming. With its far-

reaching data-driven perspective for problem solving, 

experts in all fields of study have been re-examining, 

through the new lens of machine learning, different 

problems that traditional computing paradigms were 

ill-equipped to handle. In fact, with new successes and 

adoption in many domains, machine learning has been 

rapidly infiltrating into diverse fields such as 

medicine [1,2], finance [3], and automation in all its 

aspects [4–7]. 

With the thrust in machine learning (ML) 

research still gaining momentum, new models are 

being continuously developed in both the supervised 

and unsupervised areas. Traditionally, regression and 

classification models have been the most prominent 

learning models with applications in many fields 

being cast into either of them [8]. Recently, new 

learning paradigms have emerged, and thus provided 

new prospects for machine learning. Among these 

paradigms is generative learning which has been 

considered one of the most interesting ideas in the last 

decade in machine learning [9, 10]. 

With generative learning, the role of machine 

learning models has been flipped from mere data 
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consumers to data generators. In fact, models that 

started as a means for data compression and feature 

extraction [11] have quickly emerged to generative 

models capable of producing quality samples based 

on a learned distribution [9, 12]. Despite its original 

intended target of generating fake images that can fool 

traditional machine learning models (from which the 

term adversary comes), applications of state-of-the-

art generative adversarial networks (GANs) have 

demonstrated that such adversary can be reconciled 

and put towards a good use; thus, turning adversary 

into a powerful tool. 

In its essence, generative learning targets 

developing a model that is capable of learning the 

distribution of a given data set with the intent of 

generating new samples from it [9]. This can be useful 

in several applications where data is scarce and 

available datasets are insufficient for supervised 

learning tasks such as regression and classification [13]. 

In this aspect, generative learning is viewed as a data 

preparation tool which is critical in machine learning. 

However, recently, generative models stepped beyond 

this limit to claim the central role as stand-alone 

models capable of performing complex tasks, and 

nowhere is this more evident than in conditional 

GANs (CGANs) that have been adopted in different 

applications. Unlike conventional GANs that target 

stochastic sample generation, a CGAN is perceived as 

a translator; i.e., given a sample in a particular domain, 

https://doi.org/10.33079/jomm.19020401
mailto:dpan@ece.utexas.edu


Alawieh et al.: Generative Learning in VLSI Design for Manufacturability: Current Status and Future Directions 

J. Microelectron. Manuf. 2, 19020401 (2019) 2  

it targets translating it to another. A simple example is 

image coloring where black and white images are 

colored using a trained CGAN. In this sense, a CGAN 

is viewed as a powerful tool that can replace many 

time-consuming processes such as medical image 

synthesis [14] and lithography simulation [15]. 

In the midst of the machine learning revolution, 

Electronic Design Automation (EDA), as most other 

fields of research, has adopted the recent advances to 

address challenges in the field [4]. In particular, 

generative learning has been widely adopted in many 

applications to improve the efficiency of the design 

process. These applications span different domains 

with particular success in physical design automation 

[16–20] and design for manufacturability (DFM) related 

applications [15, 21–25]. In these applications, generative 

learning has stepped out of the conventional frame to 

act as a data-driven optimizer or simulator that can 

significantly speedup design closure. This in fact 

paves the way for a new paradigm of design 

automation with limited dependence on expensive 

traditional simulation and optimization tools. 

In this paper, we review recent applications of 

generative learning in the field of DFM. Here, we 

present the successful adoption of this learning 

scheme in DFM while shedding light on the new 

paradigm such scheme has introduced into the field. 

We first review the necessary background about 

generative learning in Section 2 and then present its 

applications in DFM in Section 3. In Section 4, we 

reflect on the impact of these applications and 

possible future works. Conclusions are presented in 

Section 5. 

2. Generative Learning Background 

In this section, we review the background of the 

state-of-the-art generative learning models that have 

been recently adopted to address challenges in DFM. 

In particular, we first present different types of 

autoencoders which are typically used for data 

generation; i.e., the very core target of these models. 

Next, we review GAN models which stepped out of 

their core domain in modeling and generation to claim 

the roles of simulators and optimizers which are 

critical and tedious in many DFM applications. 

2.1 Autoencoders 

Autoencoders (AEs) have been traditionally 

used as data compression tools for dimensionality 

reduction and feature learning [26, 27]. These models are 

lossy compression tools that are leaned from data and 

are data specific. In other words, an AE can compress 

data similar to that seen in the training process while 

incurring some degradation when decompressing the 

input. These features of AE rank it among the most 

used feature extraction and dimensionality reduction 

tools [12]. 

In principle, an AE is composed of two functions 

typically implemented using neural networks: an 

encoder function f and a decoder function h. Given a 

dataset {xi: i = 1, . . . , N}, AE can be used to obtain a 

low dimensional latent space representation {zi: i = 

1, . . . , N} of the input samples [12, 26]. Hence, the 

objective is to learn the two mapping functions f: x → 

z and h: z → x. Typically, the dimension of zi  is 

significantly smaller than that of xi. Hence, the low-

level embedding can be used as a feature vector when 

developing complex supervised machine learning 

models such as image classification or object 

detection [27]. 

From a model perspective, an AE is an 

unsupervised model that implements the encoding 

function f as a down sampling stream that starts from 

the input x to generate the latent representation z, and 

g as an upsampling one that takes z as an input to 

regenerate x as shown in Fig. 1(a) [12]. The objective 

is to generate an output �̂� that is ideally equal to x and 

practically as close to it as possible. Mathematically, 

the objective of the training process is to minimize the 

following loss function: 

ℒ𝐴𝐸 = ∑ 𝑙(𝑥𝑖 , �̂�𝑖)
𝑁
𝑖=1                    (1) 

where l(xi,�̂�i) can be an l2-norm distance, pixel-wise 

cross entropy for images [27], or any other function that 

can capture the discrepancy between xi and �̂�i. 

 
(a) AE 

 

(b) VAE 

Figure 1. The architecture for (a) an autoencoder and (b) a 

variational autoencoder. 
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While an AE is adequate for data compression 

and feature extraction, generating synthetic data 

samples using it is not trivial since it does not 

explicitly learn the probability distribution 

representing the data [12]. On the other hand, 

variational auto-encoders (VAEs) were developed to 

model this distribution; hence, presenting a generative 

model framework that allows sampling new synthetic 

data from the learned distribution [11,12,27]. The 

architecture of a VAE is very similar to that of an AE 

with the main difference lying in the latent space 

representation. Instead of training the encoder 

function  f  to generate the latent representation z, it is 

trained to learn the distribution of z through the 

parameters μ and σ as shown in Fig. 1(b). Then, z is 

sampled from the learned distribution with some 

additive noise before being fed to the decoder network 

which works in the same fashion as in an AE. 

Mathematically, z can be obtained as follows [11]: 

z=μ+σ1/2⋅ϵ,   where  ϵ ~ N(0,I)             (2) 

Moreover, to govern the distribution learning 

process, the objective function is adjusted to include 

a KL-divergence term that captures the difference 

between the prior distribution of z, P(z) , and that 

learned after seeing the samples x, Q(z|x) [11]. The new 

loss function for the VAE model is given as: 

ℒVAE=ℒAE+λ∙DKL[Q(z|x)||P(z)]            (3) 

where DKL[Q||P]  represents the KL-divergence 

between distributions Q and P and λ is a hyper 

parameter used to tune the importance of the two 

different loss terms. 

2.2 Generative Adsersarial Networks 

While the VAE is a generative model that is 

capable of producing new samples from a learned data 

distribution, its main objective is to learn the latent 

space representation and the corresponding 

distribution. Generative adversarial networks (GANs) 

are explicitly set up to optimize for the generative 

tasks [9]. In their essence, GANs were proposed as 

generative models that learn a mapping from a 

random noise vector 𝑧  to an output 𝑦 , G: z → y  [9]. 

The architecture of a GAN is composed of two main 

components: the generator and the discriminator. The 

generator G is trained to produce samples based on an 

input noise vector 𝑧 that cannot be distinguished from 

“real” images by an adversarially trained 

discriminator, D, which is trained to do as well as 

possible at detecting the generator “fakes” [9]. 

The conventional generator in a GAN is 

basically an encoder-decoder scheme similar to that in 

an AE where the input is passed through a series of 

layers that progressively downsample it (i.e., 

encoding), until a bottleneck layer, at which point the 

process is reversed (i.e., decoding) [9, 10, 28]. On the 

other hand, the discriminator is a convolutional neural 

network whose objective is to classify “fake” and 

“real” images. Hence, its structure differs from that of 

the generator and resembles a typical two-class 

classification network [9, 10, 28]. This adversarial 

scheme is represented in the objective function given 

as: 

min
G

max
D

𝔼x[log D(x)] + 𝔼z[log(1-D(G(z)))]    (4) 

where D(•)  represents the probability of a sample 

being real; i.e., not generated by G. After training, the 

generator part of the GAN is used to generate new 

samples using random noise vectors while the 

discriminator is discarded as it is only needed for the 

training process [9, 10, 28]. 

The introduction of GANs has paved the way for 

a new class of models that stemmed from the original 

GAN concept. In fact, different versions of GANs, 

tailored towards specific domain and applications, 

were proposed especially for image related tasks. 

Among these are the CGANs which, in contrast with 

original GANs, learn a mapping from an observed 

image x and random noise vector z, to y, G:{x, z}→ y. 

Technically, CGANs have changed the objective 

from a pure generative one to a domain-transfer task 

capable of establishing a mapping between images in 

different domains. Its applications span different 

domains ranging from image coloring to aerial to map, 

edge to photo translations, and medical applications 

among others[29]. Looking at it abstractly, such models 

can be viewed in many fields as data-trained 

simulators or optimizers that can perform complex 

operations such as lithography simulation as shown in 

[15]. In fact, the CGAN model is the most adopted 

generative model for EDA applications[15, 16, 18, 19, 21, 22]. 

 

Figure 2. CGAN for lithography modeling [15]. 
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The architecture of the CGAN used for end-to-

end lithography simulation is shown in Fig. 2 where 

G translate an image from the layout domain to the 

resist shape domain, and D examines image pairs to 

detect fake ones (further details about this application 

are presented in Section 3.3). Mathematically, one 

form of a loss function used for training the CGAN 

can be given as [10, 29]: 

 ℒCGAN(G, D) 

 = 𝔼𝑥,𝑦[log D(x,y)]+𝔼𝑥,𝑧[log(1-D(x,G(x,z)))] 

+λ𝔼𝑥,𝑧,𝑦l(y,G(x,z)),                             (5) 

where x is a sample in the input domain and 𝑦 is its 

corresponding sample in the output domain. 

Comparing Equations (4) and (5), one can notice the 

addition of the loss term which penalizes the 

difference between the generated sample G(𝑥, 𝑧) and 

its corresponding golden reference y. Different loss 

functions are adopted in different CGAN models 

including l1-norm and l2-norm 

3. Generative Learning in Design for 

Manufacturability 

Lithography is one of the key stages in VLSI 

manufacturing. In advanced technology nodes, two 

lithography related steps, mask synthesis and 

verification, become extremely time consuming due 

to the complicated lithography systems and demands 

to high resolution. In this section, we will introduce 

how generative learning helps accelerate lithography 

steps and facilitates design closure. 

3.1 GAN-OPC 

With the continuous scaling of VLSI technology, 

the mask optimization process becomes a great 

challenge for designers. Resolution enhancement 

techniques (RETs) are critical for obtaining high 

manufacturing quality and yield. Among these 

techniques, optical proximity correctness (OPC) plays 

a pivotal role in improving mask printability [30, 31]. In 

particular, OPC aims at compensating lithography 

proximity effects through correcting mask pattern 

shapes as shown in Fig. 3. 

Conventional OPC methodologies are mostly 

model based where pattern edges are fractured into 

segments that are then shifted/corrected according to 

mathematical models [33]. While such an approach can 

generate high quality results, it requires iterative and 

massive calls of expensive lithography simulation [33]. 

To improve the efficiency of OPC, regression based 

approaches have been proposed to achieve fast full-

chip OPC with acceptable performance loss [30–32]. 

 

Figure 3. Motivation of OPC [4, 32]. 

In these approaches, design targets are 

fragmented, and features extracted from the 

fragmented layout are used for regression model 

training. However, and due to the complicated optical 

proximity effects, the regression models need to be 

complex; hence, they are prone to major over-fitting 

issues which limit their generalizability. 

To overcome the over-fitting issue, Matsunawa 

et al [34] proposed a hierarchical Bayes model (HBM) 

with concentric circular area sampling (CCAS) as the 

feature extraction technique. HBM trains a 

generalized linear mixed model to consider various 

edge types, including normal, convex, concave, and 

line-end edge, by regarding each edge type as a 

random effect with a random variance. As a result, 

HBM is capable of generating solutions with 

comparable quality to that from 10 iterations of 

conventional model-based approach, with a 

significant reduction in runtime. With such a 

performance, HBM was utilized to obtain a good 

starting point for model based OPC to reduce the 

number of required iterations and hence speedup the 

convergence. 

Recently, Yang et al [22] presented GAN-OPC, as 

a first generative learning-based approach for OPC 

leveraging a CGAN framework [35]. The key idea is to 

cast the mask generation task as a domain transfer 

problem where the objective is to map a ‘Target’ 

pattern to its corresponding ‘Mask’ pattern as shown 

in Fig. 4. The architecture of GAN-OPC is shown in 

Fig. 4 which, as discussed in Section 2.2, comprises 

two network models: a generator and a discriminator. 

The generator has an auto-encoder structure [36], which 

takes a design target as an input in an image format 

and outputs a mask clip. On the other hand, the 

discriminator is a classifier that differentiates 

generated masks and reference masks. In practice, the 

core OPC operation lies in the generator which learns 

a mapping function that can capture the mask 

optimization process whereas the discriminator helps 

guide the learning process during training.

Mask WaferDesign target

without OPC

with OPC
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Figure 4. Neural network architecture of GAN-OPC [22]. 

 

Figure 5. GAN-OPC flow [22]. 

 

In the training process, the loss function in 

Equation (5) is used with an l2-norm loss between the 

golden and generated mask images [22]. Such a loss 

function can be optimized with various stochastic 

gradient descent algorithms [37].  

After training, GAN-OPC is used to provide the 

starting point for a conventional ILT engine [38], as 

shown in Fig. 5. Compared with conventional ILT, 

GAN-OPC flow is reported to achieve 9% reduction 

in edge placement error (EPE) error, 1% reduction in 

process variation (PV) band, and over 2× reduction in 

the overall runtime. The runtime for the generator 

inference is only around 0.05% of the entire runtime. 

GAN-OPC not only speedups the convergence of ILT, 

but also improves the solution quality. Hence, 

generative learning was used in this application as an 

optimizer rather than a typical model used for 

regression or classification task, and it is evident that 

it can perform a good job in terms of both 

performance and speedup. 

3.2 GAN-SRAF 

Similar to OPC, sub-resolution assist feature 

(SRAF) generation is a key RET to improve the target 

pattern quality and lithographic process window. 

These assist features are not actually printed; instead, 

the SRAF patterns would deliver light to the positions 

of target patterns at proper phase which can improve 

the robustness of target printing to lithographic 

variations [39].  

      
                         (a)                                 (b) 

Figure 6. Multi-channel heatmaps encoding process where 

(a) shows an original layout representation and (b) shows 

the encoded representation [21]. 

In literature, different SRAF generation 

approaches have been proposed and adopted. On one 

hand, there are rule-based approaches that can achieve 

acceptable accuracy within short execution time for 

simple designs and regular target patterns; yet fall 

short of handling complex shapes [40, 41]. On the other 

hand, model-based SRAF generation methods have 

been proposed relying on either simulated aerial 
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images to seed the SRAF generation [42, 43], or inverse 

lithography technology (ILT) to compute the image 

contour and guide the SRAF generation [44]. Despite 

better lithographic performance compared to the rule-

based approach, the model-based SRAF generation is 

very time-consuming [39]. 

Xu et al [39] introduced machine learning to tackle 

the problem of SRAF insertion more efficiently [4, 39]. 

The proposed method relies on SRAF features 

extraction with local sampling scheme to obtain the 

optimal SRAF map. This approach has achieved 10x 

speedup compared to model-based approaches with 

comparable quality [39]. 

Recently, Alawieh et al [21] proposed GAN-

SRAF that leverages generative adversarial learning 

to further improve the efficiency of SRAF insertion 

problem by examining it from a new perspective. In 

fact, a layout can be simply viewed as an image; hence, 

machine learning techniques developed for image 

related tasks can come in handy. Specifically, CGANs 

have been adopted to perform a wide range of domain 

transfer tasks where image translation is the most 

infamous [10, 29]. Hence, the SRAF generation task is 

cast into an image translation task where the two 

images domains are: (i) original layout and (ii) layout 

with SRAFs. Thus, generating an SRAF scheme for a 

particular layout can be seen as translating the layout 

image from the first domain (i.e., original layout) to 

the second domain (i.e., layout with SRAFs) [21, 29]. 

However, direct image representation of layout 

is not suitable for the SRAF generation using GANs 

due to two major limitations. First, GANs exhibit 

inherent limitation in detecting sharp edges and are 

not guaranteed to generate ‘clean’ rectangular shapes 

for the SRAFs [45]. In addition, extracting the SRAF 

information from the image to be mapped back to the 

layout file can be prohibitively expensive. Hence, a 

special encoding scheme, typically used in keypoint 

estimation [46–49], is proposed in [21] to overcome the 

aforementioned limitations. The proposed scheme is 

based on multi-channel heatmaps which associates 

each object type with one channel in the image [48, 49]. 

An example of such encoding is shown in Fig. 6 

where an original layout is shown in Fig. 6(a) and the 

multi-channel heatmap representation is shown in Fig. 

6(b). In this example, the number of channels is set to 

3 to visualize the encoded representation through a 

red-green-blue (RGB) image: (i) target patterns (in 

red), (ii) horizontal SRAFs (in green) and (iii) vertical 

SRAFs (in blue). 

The encoding has two main advantages: (i) no 

sharp edges in the image representation, and (ii) 

images generated by the GAN models can be easily 

mapped back to layout files using a fast custom 

CUDA accelerator for the decoding scheme [21]. The 

overall GAN-SRAF framework is based upon a 

CGAN model for domain transfer as shown in Fig. 7. 

 

Figure 7. GAN-SRAF overall flow [21]. 

Results presented in [21] show that GAN-SRAF 

can achieve 14× reduction in runtime compared to the 

work in [39] and 144× when compared to model-

based approaches while achieving comparable results. 

Here again, generative learning was utilized to 

efficiently perform an end-to-end RET task to 

optimize the lithography process. 

3.3 LithoGAN 

During the lithography process, a designed mask 

pattern is transferred into a resist pattern on the top 

surface of a semiconductor wafer [50, 51]. The 

semiconductor industry has relied on lithography 

simulation for process development and performance 

verification. Rigorous lithography simulation 

precisely simulates the physical effects of materials 

but is computationally expensive. Therefore, compact 

models stand as a speedup alternative to rigorous 

computation with a small sacrifice in accuracy, which 

enables its wide application for lithography 

verification. 

Fig. 8 shows a typical flow of lithography 

simulation. First, an aerial image is calculated from a 

mask pattern using a compact optical model. Then a 

resist model is used to determine the locally varying 

slicing thresholds [52]. The thresholds are processed 

through extrapolation together with the corresponding 

aerial image to evaluate the critical dimension (CD) 

of the printed patterns. 

Machine learning-based techniques have been 

proposed as a substitute for compact models for better 

simulation quality [4, 53–55]. [53] proposed an artificial 
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Figure 8. Conventional lithography simulation flow consisting of multiple stages and the proposed LithoGAN flow [15]. 

 

 

Figure 9. LithoGAN framework [15]. 

 

neural network (ANN) for resist height prediction. [54] 

proposed a convolutional neural network (CNN) 

model that predicts the slicing thresholds in aerial 

images accurately. Recently, [55] proposed a transfer 

learning model to cope with the deficiency in the 

manufacturing data at advanced technology nodes.  

These machine learning-based resist modeling 

techniques still suffer from an exorbitant 

computational cost while providing partial modeling 

schemes that rely heavily on pre and post-processing 

procedures. For this purpose, Ye et al. [15] proposed an 

end-to-end lithography modeling framework, 

LithoGAN, to directly map mask patterns to resist 

patterns by utilizing CGAN. The input domain is the 

mask designs converted to RGB images, where the 

target contact of interest is encoded into the green 

channel, neighboring contacts are encoded into the 

red channel, and SRAFs are encoded into the blue 

channel as shown in Fig. 9. The output of CGAN is 

the zoomed-in resist patterns corresponding to the 

center contact. 

For traditional computer vision tasks, locations 

of the objects in the generated image are not a major 

concern. For example, when trained on car images, 

the output of the GAN is judged upon based on the 

quality of an image as seen by a human while 

neglecting the exact location of the car in the image. 

However, for the lithography modeling task, the 

location of the generated resist pattern is as important 

as the shape of the pattern. 

Therefore, as illustrated in Fig. 9, there are two 

data paths in LithoGAN, where the shape and the 

location of the resist pattern are predicted separately. 

In the first path, a trained CGAN model is utilized to 

predict the shape of the resist pattern. During training, 

the golden pattern is re-centered at the center of the 

image, and the coordinates of the original center are 

saved for CNN training. In other words, the model is 

trained to predict resist patterns that are always 

centered at the center of the images. On the other hand, 

the second path is composed of a CNN trained to 

predict the center of the resist pattern based on the 

mask image. Here the center refers to the center of the 

bounding box enclosing the resist pattern. They are 

combined in the last step before output: the image 

generated by CGAN is adjusted by recentering the 

resist shape based on center the coordinates predicted 

from the CNN. 

Experimental results reported in [15] 

demonstrates that LithoGAN can achieve ∼1800× 

runtime reduction when compared to rigorous 

simulation, while obtaining resist pattern results that 

fall within the accepted lithography range. 

3.4 Layout Generation 

Most applications in previous sections are 

domain translation tasks, where the model is given an 

input from one domain and generates the output in 

another domain. In this section, we introduce a 

different task: pattern generation. In advanced 

manufacturing, various patterns are required to 

validate the manufacturing process. However, 

generating meaningful patterns is not an easy task, 

due to complicated design rules and high demands of 

pattern diversity. Fig. 10 shows an example of design 

rules for EUV lithography. 
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Figure 10. Layout rules under EUV lithography [23]. 

 

 

 

Figure 11. Squish representation for layout patterns [23]. 

 

To tackle this challenging task, Yang et al [23] 

proposed a DeePattern framework to generate high-

quality random patterns following the design rules 

with high pattern complexity and diversity. They 

divide the task into two steps: topology generation 

and legal pattern generation. These two steps are 

realized with the squish representation for layout 

patterns, as shown in Fig. 11, where T specifies the 

topology and δx, δy indicate the concrete width/length 

and spacing. As the topology T is essentially a matrix, 

generative models can be adopted for the topology 

generation, such as the transforming convolutional 

auto-encoder proposed in DeePattern. By perturbation 

to the latent space of the autoencoder, random 

topology can be obtained. With the generated 

topology matrix T, a legal δx, δy pair can be obtained 

by solving a linear system with constraints to clip 

sizes and design rules as follows: 

y
i+1

−  y
i
=

𝑝

2
∀i                               (6a) 

xi − xj = tmin ∀(i, j) ∈ ST2T             (6b) 

xi − xj = lmin ∀(i, j) ∈ S𝐿                (6c) 

xi+1 − xi > 0 ∀i                               (6d) 

xmax − x0 = dx                                (6e) 

y
max

− 𝑦0 = dy                                (6f) 

where p denotes the pitch in Fig. 10, tmin denotes the 

minimum tip-to-tip spacing, lmin denotes the minimum 

length, dx and dy denote the clip sizes. The set ST2T 

represents the scan lines for minimum tip-to-tips in 

the topology and the set SL represents that for 

minimum line segments. 

It needs to be noted that the autoencoder may 

generate illegal topology such as 2D shapes, bow-tie-

like shapes, and segments covering multiple tracks, 

these results are omitted with a legality check. To 

increase the diversity of the patterns, DeePattern 

measures the sensitivity of each dimension in the 

latent codes and adds Gaussian noise to proper 

dimensions. Fig. 12 shows an example generated from 

the state-of-the-art industry tool, DCGAN, and 

DeePattern. It can be seen that DeePattern generates 

much closer topologies to the industry tool. Fig. 13 

also demonstrates that DeePattern achieves better 

diversity than the industry tool. 

 

 
Figure 12. Sample pattern topology from (a) Industry tool, 

(b) DCGAN, and (c) DeePattern [23]. 

 
Figure 13. Distributions of layout generation: (a) industrial 

tool and (b) DeePattern [23]. 

 

3.5 Lithography Hotspot Detection 

Traditionally, lithography hotspots were 

accurately detected through full-chip lithography 

simulations which compute the aerial images and 

contours of printed patterns [56, 57]; though, at a 

tremendous computational cost. However, this task 

has recently received significant attention after 

machine learning technique were leveraged with 

remarkable success [25, 58–61]. In particular, different 

deep learning models have been proposed to address 

this problem with the target of detecting whether a 

given layout clip is a lithography hotspot or not, hence, 

casting the problem as a binary classification task. 

However, addressing this task is not trivial. Despite 

the fact that the lithography defects are critical, their 

relative number is significantly small across the whole 

chip due to the highly imbalance nature of the data. 

Thus, different approaches have been proposed to 

achieve high accuracy hotspot detection through 

addressing the data imbalance challenge [59, 60]. 

Recently, Chen et al [25] have examined the 

hotspot detection problem from a new angle. 

Different from the traditional approaches, the hotspot 

detection problem is cast as an object detection task 

rather than a binary classification one. In other words, 

instead of dividing the layout into different clips and 

Pitch T2T Width Length

(a) (b) (c)

(a) (b)
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Figure 14. Feature extractor for hotspot detection using autoencoder [25]. 

 

predicting a binary label for each using machine 

learning models, an entire layout region is considered 

where the task is to detect all hotspots in the region [25].  

The approach proposed in [25] comprises a 

multi-stage deep learning model including: (i) feature 

extraction, (ii) clip proposal network, and (iii) 

refinement. Relevant to our discussion is the 

implementation of the feature extractor which is based 

upon an autoencoder framework. As discussed in 

Section 2, autoencoders were developed as a tool for 

feature extraction and data compression. In [25], and 

unlike previous works on hotspot detection where 

features were pre-set such as using Discrete Cosine 

Transform (DCT) in [60], feature extraction is data 

driven. With the AE scheme, the model optimizes for 

the feature extraction as a part of the overall hotspot 

detection framework. The feature extraction scheme 

used in [25] is shown in Fig. 14 which contains an 

autoencoder scheme along with an inception model. 

This feature extraction scheme is followed by a 

two-stage classification and regression framework 

which can achieve significant reduction in prediction 

runtime and better performance in terms of both 

hotspot detection accuracy and false alarms [25]. Thus, 

generative learning is utilized in this work to provide 

a self-adaptive feature transformation scheme that is 

very compatible with convolution neural networks 

and time saving [25].  

It is worth mentioning that the adversary nature 

of GAN has been recently used to study the resilience 

of machine learning models against adversarial 

perturbation. In [24], Liu et at studied the potential of 

adversary attacks on machine learning based EDA 

approaches while considering hotspot detection as a 

case study. The study showed that CNN-based 

hotspot detectors can be fooled by specially crafted 

SRAF insertions that can mislead the network to 

predict a hotspot layout as non-hotspot. This first 

study unearthed a threat that should be considered 

when using machine leaning tools in EDA, thus, 

urging caution and advocating for further study of the 

wider security implications of deep learning in this 

field [24]. 

4. General Takeaways 

The aforementioned applications of generative 

learning in the field of DFM represent a part of a new 

paradigm in the field based on machine learning. In 

general, the driving motivation for this new path is 

enhancing performance and speeding up design 

closure. However, generative learning has left its 

unique characteristics. 

• Design Representation:  

When using generative learning, design 

representations at different stages are cast into visual 

context, i.e., designs or layouts are treated as images. 

While such visual representations are not trivial in 

some cases, as in the case of the SRAF encoding 

scheme in Section 3.2, it has been shown that, if an 

adequate representation can be obtained, a wide range 

of models and tools are available to handle different 

applications. In practice, new machine learning 

models for computer vision are developed 

continuously and generative learning is one of the 

latest. Thus, providing competent visual 

representation for designs at different levels is the first 

step towards using the resourceful machine learning 

toolbox for computer vision as shown in the examples 

presented in Section 3. 

• Models as Optimizers:  

While conventional machine learning models are 

viewed in the scope of regression and classification 

tools, generative learning has taken that one step 

further to act as a stand-alone simulator as in 

LithoGAN (Section 3.3) and as an optimizer in both 

GAN-OPC and GAN-SRAF (Sections 3.1 and 3.2). In 

practice, these generative models are now generating 

solutions that can parallel those of conventional tools 

and are doing that much faster. For example, with 

1800× speedup in lithography simulation, LithoGAN 

is redefining the role of machine learning in 

lithography. Therefore, it is expected that such models 

will be introduced into different early exploration 
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stages in DFM resulting in orders of magnitude 

speedup compared to traditional approaches; hence, 

revolutionizing the way the field is perceived. 

• Adversary in ML for DFM: 

While most generative adversarial models have 

used adversary towards good ends, it is important to 

keep in mind that it is still called adversarial for a 

reason, and it can be used towards different ends. In 

Section 3.5, the adversary threat for ML models was 

briefly introduced, and this topic is expected to attract 

more attention as adoption of ML techniques expands. 

Here, generative models can be used to build more 

resilient ML models that are capable of withstanding 

adversarial attacks. 

5. Conclusion 

This paper reviews the recent generative 

learning applications in various design for 

manufacturability tasks, such as lithography modeling, 

hotspot detection, and mask optimization. While 

conventional approaches to address these tasks are 

data intensive and computationally expensive, 

generative learning is emerging as an alternative 

framework that can substitute them while improving 

performance and/or efficiency, eventually 

contributing to fast design closure and good 

manufacturability. In fact, generative learning has 

stepped out of the conventional frame for ML models 

to act as a data-driven optimizer or simulator that can 

significantly speedup design closure. This paves the 

way for a new paradigm of design automation with 

limited dependence on expensive traditional 

simulation and optimization tools. 

With the proven success in many DFM 

applications, wider adoption of these models still 

faces some challenges: 

• requirement of high resolution in many 

accuracy demanding applications;  

• adequate visual representation for target designs 

and applications; 

• requirement of large initial training datasets;  

• requirement of framework for data re-use when 

technology changes. 

These challenges are already under spotlight for 

research in machine learning where new solutions are 

being developed to overcome them in ML 

applications in different fields. With more success at 

this front in the near future, wider adoption of 

generative learning in EDA, and DFM in particular, is 

expected. 
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