
J. Microelectron. Manuf. 2, 19020401 (2019)

doi: 10.33079/jomm.19020401

 1

Generative Learning in VLSI Design for Manufacturability:

Current Status and Future Directions

Mohamed Baker Alawieh1, Yibo Lin2, Wei Ye1, and David Z. Pan1,*

1 Electrical and Computer Engineering, University of Texas at Austin, Austin, USA, 78712
2 School of Electronics Engineering and Computer Science, Peking University, Beijing, China,

100871

Abstract: With the continuous scaling of integrated circuit technologies, design for

manufacturability (DFM) is becoming more critical, yet more challenging. Alongside, recent

advances in machine learning have provided a new computing paradigm with promising applications

in VLSI manufacturability. In particular, generative learning - regarded among the most interesting

ideas in present-day machine learning - has demonstrated impressive capabilities in a wide range of

applications. This paper surveys recent results of using generative learning in VLSI manufacturing

modeling and optimization. Specifically, we examine the unique features of generative learning that

have been leveraged to improve DFM efficiency in an unprecedented way; hence, paving the way

to a new data-driven DFM approach. The state-of-the-art methods are presented, and

challenges/opportunities are discussed.

Keywords: Design for Manufacturability, Generative Learning, Machine Learning, Lithography.

1. Introduction

Recent advances in machine learning have

dramatically altered the perception of computing

through providing the ability to learn without

traditional explicit programming. With its far-

reaching data-driven perspective for problem solving,

experts in all fields of study have been re-examining,

through the new lens of machine learning, different

problems that traditional computing paradigms were

ill-equipped to handle. In fact, with new successes and

adoption in many domains, machine learning has been

rapidly infiltrating into diverse fields such as

medicine [1,2], finance [3], and automation in all its

aspects [4–7].

With the thrust in machine learning (ML)

research still gaining momentum, new models are

being continuously developed in both the supervised

and unsupervised areas. Traditionally, regression and

classification models have been the most prominent

learning models with applications in many fields

being cast into either of them [8]. Recently, new

learning paradigms have emerged, and thus provided

new prospects for machine learning. Among these

paradigms is generative learning which has been

considered one of the most interesting ideas in the last

decade in machine learning [9, 10].

With generative learning, the role of machine

learning models has been flipped from mere data

*
 Address all correspondence to: David Z. Pan, E-mail: dpan@ece.utexas.edu

consumers to data generators. In fact, models that

started as a means for data compression and feature

extraction [11] have quickly emerged to generative

models capable of producing quality samples based

on a learned distribution [9, 12]. Despite its original

intended target of generating fake images that can fool

traditional machine learning models (from which the

term adversary comes), applications of state-of-the-

art generative adversarial networks (GANs) have

demonstrated that such adversary can be reconciled

and put towards a good use; thus, turning adversary

into a powerful tool.

In its essence, generative learning targets

developing a model that is capable of learning the

distribution of a given data set with the intent of

generating new samples from it [9]. This can be useful

in several applications where data is scarce and

available datasets are insufficient for supervised

learning tasks such as regression and classification [13].

In this aspect, generative learning is viewed as a data

preparation tool which is critical in machine learning.

However, recently, generative models stepped beyond

this limit to claim the central role as stand-alone

models capable of performing complex tasks, and

nowhere is this more evident than in conditional

GANs (CGANs) that have been adopted in different

applications. Unlike conventional GANs that target

stochastic sample generation, a CGAN is perceived as

a translator; i.e., given a sample in a particular domain,

https://doi.org/10.33079/jomm.19020401
mailto:dpan@ece.utexas.edu

Alawieh et al.: Generative Learning in VLSI Design for Manufacturability: Current Status and Future Directions

J. Microelectron. Manuf. 2, 19020401 (2019) 2

it targets translating it to another. A simple example is

image coloring where black and white images are

colored using a trained CGAN. In this sense, a CGAN

is viewed as a powerful tool that can replace many

time-consuming processes such as medical image

synthesis [14] and lithography simulation [15].

In the midst of the machine learning revolution,

Electronic Design Automation (EDA), as most other

fields of research, has adopted the recent advances to

address challenges in the field [4]. In particular,

generative learning has been widely adopted in many

applications to improve the efficiency of the design

process. These applications span different domains

with particular success in physical design automation

[16–20] and design for manufacturability (DFM) related

applications [15, 21–25]. In these applications, generative

learning has stepped out of the conventional frame to

act as a data-driven optimizer or simulator that can

significantly speedup design closure. This in fact

paves the way for a new paradigm of design

automation with limited dependence on expensive

traditional simulation and optimization tools.

In this paper, we review recent applications of

generative learning in the field of DFM. Here, we

present the successful adoption of this learning

scheme in DFM while shedding light on the new

paradigm such scheme has introduced into the field.

We first review the necessary background about

generative learning in Section 2 and then present its

applications in DFM in Section 3. In Section 4, we

reflect on the impact of these applications and

possible future works. Conclusions are presented in

Section 5.

2. Generative Learning Background

In this section, we review the background of the

state-of-the-art generative learning models that have

been recently adopted to address challenges in DFM.

In particular, we first present different types of

autoencoders which are typically used for data

generation; i.e., the very core target of these models.

Next, we review GAN models which stepped out of

their core domain in modeling and generation to claim

the roles of simulators and optimizers which are

critical and tedious in many DFM applications.

2.1 Autoencoders

Autoencoders (AEs) have been traditionally

used as data compression tools for dimensionality

reduction and feature learning [26, 27]. These models are

lossy compression tools that are leaned from data and

are data specific. In other words, an AE can compress

data similar to that seen in the training process while

incurring some degradation when decompressing the

input. These features of AE rank it among the most

used feature extraction and dimensionality reduction

tools [12].

In principle, an AE is composed of two functions

typically implemented using neural networks: an

encoder function f and a decoder function h. Given a

dataset {xi: i = 1, . . . , N}, AE can be used to obtain a

low dimensional latent space representation {zi: i =

1, . . . , N} of the input samples [12, 26]. Hence, the

objective is to learn the two mapping functions f: x →

z and h: z → x. Typically, the dimension of zi is

significantly smaller than that of xi. Hence, the low-

level embedding can be used as a feature vector when

developing complex supervised machine learning

models such as image classification or object

detection [27].

From a model perspective, an AE is an

unsupervised model that implements the encoding

function f as a down sampling stream that starts from

the input x to generate the latent representation z, and

g as an upsampling one that takes z as an input to

regenerate x as shown in Fig. 1(a) [12]. The objective

is to generate an output 𝑥̂ that is ideally equal to x and

practically as close to it as possible. Mathematically,

the objective of the training process is to minimize the

following loss function:

ℒ𝐴𝐸 = ∑ 𝑙(𝑥𝑖 , 𝑥̂𝑖)
𝑁
𝑖=1 (1)

where l(xi,𝑥̂i) can be an l2-norm distance, pixel-wise

cross entropy for images [27], or any other function that

can capture the discrepancy between xi and 𝑥̂i.

(a) AE

(b) VAE

Figure 1. The architecture for (a) an autoencoder and (b) a

variational autoencoder.

Alawieh et al.: Generative Learning in VLSI Design for Manufacturability: Current Status and Future Directions

J. Microelectron. Manuf. 2, 19020401 (2019) 3

While an AE is adequate for data compression

and feature extraction, generating synthetic data

samples using it is not trivial since it does not

explicitly learn the probability distribution

representing the data [12]. On the other hand,

variational auto-encoders (VAEs) were developed to

model this distribution; hence, presenting a generative

model framework that allows sampling new synthetic

data from the learned distribution [11,12,27]. The

architecture of a VAE is very similar to that of an AE

with the main difference lying in the latent space

representation. Instead of training the encoder

function f to generate the latent representation z, it is

trained to learn the distribution of z through the

parameters μ and σ as shown in Fig. 1(b). Then, z is

sampled from the learned distribution with some

additive noise before being fed to the decoder network

which works in the same fashion as in an AE.

Mathematically, z can be obtained as follows [11]:

z=μ+σ1/2⋅ϵ, where ϵ ~ N(0,I) (2)

Moreover, to govern the distribution learning

process, the objective function is adjusted to include

a KL-divergence term that captures the difference

between the prior distribution of z, P(z) , and that

learned after seeing the samples x, Q(z|x) [11]. The new

loss function for the VAE model is given as:

ℒVAE=ℒAE+λ∙DKL[Q(z|x)||P(z)] (3)

where DKL[Q||P] represents the KL-divergence

between distributions Q and P and λ is a hyper

parameter used to tune the importance of the two

different loss terms.

2.2 Generative Adsersarial Networks

While the VAE is a generative model that is

capable of producing new samples from a learned data

distribution, its main objective is to learn the latent

space representation and the corresponding

distribution. Generative adversarial networks (GANs)

are explicitly set up to optimize for the generative

tasks [9]. In their essence, GANs were proposed as

generative models that learn a mapping from a

random noise vector 𝑧 to an output 𝑦 , G: z → y [9].

The architecture of a GAN is composed of two main

components: the generator and the discriminator. The

generator G is trained to produce samples based on an

input noise vector 𝑧 that cannot be distinguished from

“real” images by an adversarially trained

discriminator, D, which is trained to do as well as

possible at detecting the generator “fakes” [9].

The conventional generator in a GAN is

basically an encoder-decoder scheme similar to that in

an AE where the input is passed through a series of

layers that progressively downsample it (i.e.,

encoding), until a bottleneck layer, at which point the

process is reversed (i.e., decoding) [9, 10, 28]. On the

other hand, the discriminator is a convolutional neural

network whose objective is to classify “fake” and

“real” images. Hence, its structure differs from that of

the generator and resembles a typical two-class

classification network [9, 10, 28]. This adversarial

scheme is represented in the objective function given

as:

min
G

max
D

𝔼x[log D(x)] + 𝔼z[log(1-D(G(z)))] (4)

where D(•) represents the probability of a sample

being real; i.e., not generated by G. After training, the

generator part of the GAN is used to generate new

samples using random noise vectors while the

discriminator is discarded as it is only needed for the

training process [9, 10, 28].

The introduction of GANs has paved the way for

a new class of models that stemmed from the original

GAN concept. In fact, different versions of GANs,

tailored towards specific domain and applications,

were proposed especially for image related tasks.

Among these are the CGANs which, in contrast with

original GANs, learn a mapping from an observed

image x and random noise vector z, to y, G:{x, z}→ y.

Technically, CGANs have changed the objective

from a pure generative one to a domain-transfer task

capable of establishing a mapping between images in

different domains. Its applications span different

domains ranging from image coloring to aerial to map,

edge to photo translations, and medical applications

among others[29]. Looking at it abstractly, such models

can be viewed in many fields as data-trained

simulators or optimizers that can perform complex

operations such as lithography simulation as shown in

[15]. In fact, the CGAN model is the most adopted

generative model for EDA applications[15, 16, 18, 19, 21, 22].

Figure 2. CGAN for lithography modeling [15].

Alawieh et al.: Generative Learning in VLSI Design for Manufacturability: Current Status and Future Directions

J. Microelectron. Manuf. 2, 19020401 (2019) 4

The architecture of the CGAN used for end-to-

end lithography simulation is shown in Fig. 2 where

G translate an image from the layout domain to the

resist shape domain, and D examines image pairs to

detect fake ones (further details about this application

are presented in Section 3.3). Mathematically, one

form of a loss function used for training the CGAN

can be given as [10, 29]:

 ℒCGAN(G, D)

 = 𝔼𝑥,𝑦[log D(x,y)]+𝔼𝑥,𝑧[log(1-D(x,G(x,z)))]

+λ𝔼𝑥,𝑧,𝑦l(y,G(x,z)), (5)

where x is a sample in the input domain and 𝑦 is its

corresponding sample in the output domain.

Comparing Equations (4) and (5), one can notice the

addition of the loss term which penalizes the

difference between the generated sample G(𝑥, 𝑧) and

its corresponding golden reference y. Different loss

functions are adopted in different CGAN models

including l1-norm and l2-norm

3. Generative Learning in Design for

Manufacturability

Lithography is one of the key stages in VLSI

manufacturing. In advanced technology nodes, two

lithography related steps, mask synthesis and

verification, become extremely time consuming due

to the complicated lithography systems and demands

to high resolution. In this section, we will introduce

how generative learning helps accelerate lithography

steps and facilitates design closure.

3.1 GAN-OPC

With the continuous scaling of VLSI technology,

the mask optimization process becomes a great

challenge for designers. Resolution enhancement

techniques (RETs) are critical for obtaining high

manufacturing quality and yield. Among these

techniques, optical proximity correctness (OPC) plays

a pivotal role in improving mask printability [30, 31]. In

particular, OPC aims at compensating lithography

proximity effects through correcting mask pattern

shapes as shown in Fig. 3.

Conventional OPC methodologies are mostly

model based where pattern edges are fractured into

segments that are then shifted/corrected according to

mathematical models [33]. While such an approach can

generate high quality results, it requires iterative and

massive calls of expensive lithography simulation [33].

To improve the efficiency of OPC, regression based

approaches have been proposed to achieve fast full-

chip OPC with acceptable performance loss [30–32].

Figure 3. Motivation of OPC [4, 32].

In these approaches, design targets are

fragmented, and features extracted from the

fragmented layout are used for regression model

training. However, and due to the complicated optical

proximity effects, the regression models need to be

complex; hence, they are prone to major over-fitting

issues which limit their generalizability.

To overcome the over-fitting issue, Matsunawa

et al [34] proposed a hierarchical Bayes model (HBM)

with concentric circular area sampling (CCAS) as the

feature extraction technique. HBM trains a

generalized linear mixed model to consider various

edge types, including normal, convex, concave, and

line-end edge, by regarding each edge type as a

random effect with a random variance. As a result,

HBM is capable of generating solutions with

comparable quality to that from 10 iterations of

conventional model-based approach, with a

significant reduction in runtime. With such a

performance, HBM was utilized to obtain a good

starting point for model based OPC to reduce the

number of required iterations and hence speedup the

convergence.

Recently, Yang et al [22] presented GAN-OPC, as

a first generative learning-based approach for OPC

leveraging a CGAN framework [35]. The key idea is to

cast the mask generation task as a domain transfer

problem where the objective is to map a ‘Target’

pattern to its corresponding ‘Mask’ pattern as shown

in Fig. 4. The architecture of GAN-OPC is shown in

Fig. 4 which, as discussed in Section 2.2, comprises

two network models: a generator and a discriminator.

The generator has an auto-encoder structure [36], which

takes a design target as an input in an image format

and outputs a mask clip. On the other hand, the

discriminator is a classifier that differentiates

generated masks and reference masks. In practice, the

core OPC operation lies in the generator which learns

a mapping function that can capture the mask

optimization process whereas the discriminator helps

guide the learning process during training.

Mask WaferDesign target

without OPC

with OPC

Alawieh et al.: Generative Learning in VLSI Design for Manufacturability: Current Status and Future Directions

J. Microelectron. Manuf. 2, 19020401 (2019) 5

Figure 4. Neural network architecture of GAN-OPC [22].

Figure 5. GAN-OPC flow [22].

In the training process, the loss function in

Equation (5) is used with an l2-norm loss between the

golden and generated mask images [22]. Such a loss

function can be optimized with various stochastic

gradient descent algorithms [37].

After training, GAN-OPC is used to provide the

starting point for a conventional ILT engine [38], as

shown in Fig. 5. Compared with conventional ILT,

GAN-OPC flow is reported to achieve 9% reduction

in edge placement error (EPE) error, 1% reduction in

process variation (PV) band, and over 2× reduction in

the overall runtime. The runtime for the generator

inference is only around 0.05% of the entire runtime.

GAN-OPC not only speedups the convergence of ILT,

but also improves the solution quality. Hence,

generative learning was used in this application as an

optimizer rather than a typical model used for

regression or classification task, and it is evident that

it can perform a good job in terms of both

performance and speedup.

3.2 GAN-SRAF

Similar to OPC, sub-resolution assist feature

(SRAF) generation is a key RET to improve the target

pattern quality and lithographic process window.

These assist features are not actually printed; instead,

the SRAF patterns would deliver light to the positions

of target patterns at proper phase which can improve

the robustness of target printing to lithographic

variations [39].

 (a) (b)

Figure 6. Multi-channel heatmaps encoding process where

(a) shows an original layout representation and (b) shows

the encoded representation [21].

In literature, different SRAF generation

approaches have been proposed and adopted. On one

hand, there are rule-based approaches that can achieve

acceptable accuracy within short execution time for

simple designs and regular target patterns; yet fall

short of handling complex shapes [40, 41]. On the other

hand, model-based SRAF generation methods have

been proposed relying on either simulated aerial

…

0.2 0.8

Generated

Mask

Reference

Mask

D
iscrim

in
ato

r

G
en

erato
r

…

E
n

co
d

er
D

eco
d

er

Target

Mask

Target & Mask

ILT

Engine
Generator

Alawieh et al.: Generative Learning in VLSI Design for Manufacturability: Current Status and Future Directions

J. Microelectron. Manuf. 2, 19020401 (2019) 6

images to seed the SRAF generation [42, 43], or inverse

lithography technology (ILT) to compute the image

contour and guide the SRAF generation [44]. Despite

better lithographic performance compared to the rule-

based approach, the model-based SRAF generation is

very time-consuming [39].

Xu et al [39] introduced machine learning to tackle

the problem of SRAF insertion more efficiently [4, 39].

The proposed method relies on SRAF features

extraction with local sampling scheme to obtain the

optimal SRAF map. This approach has achieved 10x

speedup compared to model-based approaches with

comparable quality [39].

Recently, Alawieh et al [21] proposed GAN-

SRAF that leverages generative adversarial learning

to further improve the efficiency of SRAF insertion

problem by examining it from a new perspective. In

fact, a layout can be simply viewed as an image; hence,

machine learning techniques developed for image

related tasks can come in handy. Specifically, CGANs

have been adopted to perform a wide range of domain

transfer tasks where image translation is the most

infamous [10, 29]. Hence, the SRAF generation task is

cast into an image translation task where the two

images domains are: (i) original layout and (ii) layout

with SRAFs. Thus, generating an SRAF scheme for a

particular layout can be seen as translating the layout

image from the first domain (i.e., original layout) to

the second domain (i.e., layout with SRAFs) [21, 29].

However, direct image representation of layout

is not suitable for the SRAF generation using GANs

due to two major limitations. First, GANs exhibit

inherent limitation in detecting sharp edges and are

not guaranteed to generate ‘clean’ rectangular shapes

for the SRAFs [45]. In addition, extracting the SRAF

information from the image to be mapped back to the

layout file can be prohibitively expensive. Hence, a

special encoding scheme, typically used in keypoint

estimation [46–49], is proposed in [21] to overcome the

aforementioned limitations. The proposed scheme is

based on multi-channel heatmaps which associates

each object type with one channel in the image [48, 49].

An example of such encoding is shown in Fig. 6

where an original layout is shown in Fig. 6(a) and the

multi-channel heatmap representation is shown in Fig.

6(b). In this example, the number of channels is set to

3 to visualize the encoded representation through a

red-green-blue (RGB) image: (i) target patterns (in

red), (ii) horizontal SRAFs (in green) and (iii) vertical

SRAFs (in blue).

The encoding has two main advantages: (i) no

sharp edges in the image representation, and (ii)

images generated by the GAN models can be easily

mapped back to layout files using a fast custom

CUDA accelerator for the decoding scheme [21]. The

overall GAN-SRAF framework is based upon a

CGAN model for domain transfer as shown in Fig. 7.

Figure 7. GAN-SRAF overall flow [21].

Results presented in [21] show that GAN-SRAF

can achieve 14× reduction in runtime compared to the

work in [39] and 144× when compared to model-

based approaches while achieving comparable results.

Here again, generative learning was utilized to

efficiently perform an end-to-end RET task to

optimize the lithography process.

3.3 LithoGAN

During the lithography process, a designed mask

pattern is transferred into a resist pattern on the top

surface of a semiconductor wafer [50, 51]. The

semiconductor industry has relied on lithography

simulation for process development and performance

verification. Rigorous lithography simulation

precisely simulates the physical effects of materials

but is computationally expensive. Therefore, compact

models stand as a speedup alternative to rigorous

computation with a small sacrifice in accuracy, which

enables its wide application for lithography

verification.

Fig. 8 shows a typical flow of lithography

simulation. First, an aerial image is calculated from a

mask pattern using a compact optical model. Then a

resist model is used to determine the locally varying

slicing thresholds [52]. The thresholds are processed

through extrapolation together with the corresponding

aerial image to evaluate the critical dimension (CD)

of the printed patterns.

Machine learning-based techniques have been

proposed as a substitute for compact models for better

simulation quality [4, 53–55]. [53] proposed an artificial

Encoder Decoder

Generator

Discriminator

Real

Input

Fake

Diff

Fake/Real

Alawieh et al.: Generative Learning in VLSI Design for Manufacturability: Current Status and Future Directions

J. Microelectron. Manuf. 2, 19020401 (2019) 7

Figure 8. Conventional lithography simulation flow consisting of multiple stages and the proposed LithoGAN flow [15].

Figure 9. LithoGAN framework [15].

neural network (ANN) for resist height prediction. [54]

proposed a convolutional neural network (CNN)

model that predicts the slicing thresholds in aerial

images accurately. Recently, [55] proposed a transfer

learning model to cope with the deficiency in the

manufacturing data at advanced technology nodes.

These machine learning-based resist modeling

techniques still suffer from an exorbitant

computational cost while providing partial modeling

schemes that rely heavily on pre and post-processing

procedures. For this purpose, Ye et al. [15] proposed an

end-to-end lithography modeling framework,

LithoGAN, to directly map mask patterns to resist

patterns by utilizing CGAN. The input domain is the

mask designs converted to RGB images, where the

target contact of interest is encoded into the green

channel, neighboring contacts are encoded into the

red channel, and SRAFs are encoded into the blue

channel as shown in Fig. 9. The output of CGAN is

the zoomed-in resist patterns corresponding to the

center contact.

For traditional computer vision tasks, locations

of the objects in the generated image are not a major

concern. For example, when trained on car images,

the output of the GAN is judged upon based on the

quality of an image as seen by a human while

neglecting the exact location of the car in the image.

However, for the lithography modeling task, the

location of the generated resist pattern is as important

as the shape of the pattern.

Therefore, as illustrated in Fig. 9, there are two

data paths in LithoGAN, where the shape and the

location of the resist pattern are predicted separately.

In the first path, a trained CGAN model is utilized to

predict the shape of the resist pattern. During training,

the golden pattern is re-centered at the center of the

image, and the coordinates of the original center are

saved for CNN training. In other words, the model is

trained to predict resist patterns that are always

centered at the center of the images. On the other hand,

the second path is composed of a CNN trained to

predict the center of the resist pattern based on the

mask image. Here the center refers to the center of the

bounding box enclosing the resist pattern. They are

combined in the last step before output: the image

generated by CGAN is adjusted by recentering the

resist shape based on center the coordinates predicted

from the CNN.

Experimental results reported in [15]

demonstrates that LithoGAN can achieve ∼1800×

runtime reduction when compared to rigorous

simulation, while obtaining resist pattern results that

fall within the accepted lithography range.

3.4 Layout Generation

Most applications in previous sections are

domain translation tasks, where the model is given an

input from one domain and generates the output in

another domain. In this section, we introduce a

different task: pattern generation. In advanced

manufacturing, various patterns are required to

validate the manufacturing process. However,

generating meaningful patterns is not an easy task,

due to complicated design rules and high demands of

pattern diversity. Fig. 10 shows an example of design

rules for EUV lithography.

Alawieh et al.: Generative Learning in VLSI Design for Manufacturability: Current Status and Future Directions

J. Microelectron. Manuf. 2, 19020401 (2019) 8

Figure 10. Layout rules under EUV lithography [23].

Figure 11. Squish representation for layout patterns [23].

To tackle this challenging task, Yang et al [23]

proposed a DeePattern framework to generate high-

quality random patterns following the design rules

with high pattern complexity and diversity. They

divide the task into two steps: topology generation

and legal pattern generation. These two steps are

realized with the squish representation for layout

patterns, as shown in Fig. 11, where T specifies the

topology and δx, δy indicate the concrete width/length

and spacing. As the topology T is essentially a matrix,

generative models can be adopted for the topology

generation, such as the transforming convolutional

auto-encoder proposed in DeePattern. By perturbation

to the latent space of the autoencoder, random

topology can be obtained. With the generated

topology matrix T, a legal δx, δy pair can be obtained

by solving a linear system with constraints to clip

sizes and design rules as follows:

y
i+1

− y
i
=

𝑝

2
∀i (6a)

xi − xj = tmin ∀(i, j) ∈ ST2T (6b)

xi − xj = lmin ∀(i, j) ∈ S𝐿 (6c)

xi+1 − xi > 0 ∀i (6d)

xmax − x0 = dx (6e)

y
max

− 𝑦0 = dy (6f)

where p denotes the pitch in Fig. 10, tmin denotes the

minimum tip-to-tip spacing, lmin denotes the minimum

length, dx and dy denote the clip sizes. The set ST2T

represents the scan lines for minimum tip-to-tips in

the topology and the set SL represents that for

minimum line segments.

It needs to be noted that the autoencoder may

generate illegal topology such as 2D shapes, bow-tie-

like shapes, and segments covering multiple tracks,

these results are omitted with a legality check. To

increase the diversity of the patterns, DeePattern

measures the sensitivity of each dimension in the

latent codes and adds Gaussian noise to proper

dimensions. Fig. 12 shows an example generated from

the state-of-the-art industry tool, DCGAN, and

DeePattern. It can be seen that DeePattern generates

much closer topologies to the industry tool. Fig. 13

also demonstrates that DeePattern achieves better

diversity than the industry tool.

Figure 12. Sample pattern topology from (a) Industry tool,

(b) DCGAN, and (c) DeePattern [23].

Figure 13. Distributions of layout generation: (a) industrial

tool and (b) DeePattern [23].

3.5 Lithography Hotspot Detection

Traditionally, lithography hotspots were

accurately detected through full-chip lithography

simulations which compute the aerial images and

contours of printed patterns [56, 57]; though, at a

tremendous computational cost. However, this task

has recently received significant attention after

machine learning technique were leveraged with

remarkable success [25, 58–61]. In particular, different

deep learning models have been proposed to address

this problem with the target of detecting whether a

given layout clip is a lithography hotspot or not, hence,

casting the problem as a binary classification task.

However, addressing this task is not trivial. Despite

the fact that the lithography defects are critical, their

relative number is significantly small across the whole

chip due to the highly imbalance nature of the data.

Thus, different approaches have been proposed to

achieve high accuracy hotspot detection through

addressing the data imbalance challenge [59, 60].

Recently, Chen et al [25] have examined the

hotspot detection problem from a new angle.

Different from the traditional approaches, the hotspot

detection problem is cast as an object detection task

rather than a binary classification one. In other words,

instead of dividing the layout into different clips and

Pitch T2T Width Length

(a) (b) (c)

(a) (b)

Alawieh et al.: Generative Learning in VLSI Design for Manufacturability: Current Status and Future Directions

J. Microelectron. Manuf. 2, 19020401 (2019) 9

Figure 14. Feature extractor for hotspot detection using autoencoder [25].

predicting a binary label for each using machine

learning models, an entire layout region is considered

where the task is to detect all hotspots in the region [25].

The approach proposed in [25] comprises a

multi-stage deep learning model including: (i) feature

extraction, (ii) clip proposal network, and (iii)

refinement. Relevant to our discussion is the

implementation of the feature extractor which is based

upon an autoencoder framework. As discussed in

Section 2, autoencoders were developed as a tool for

feature extraction and data compression. In [25], and

unlike previous works on hotspot detection where

features were pre-set such as using Discrete Cosine

Transform (DCT) in [60], feature extraction is data

driven. With the AE scheme, the model optimizes for

the feature extraction as a part of the overall hotspot

detection framework. The feature extraction scheme

used in [25] is shown in Fig. 14 which contains an

autoencoder scheme along with an inception model.

This feature extraction scheme is followed by a

two-stage classification and regression framework

which can achieve significant reduction in prediction

runtime and better performance in terms of both

hotspot detection accuracy and false alarms [25]. Thus,

generative learning is utilized in this work to provide

a self-adaptive feature transformation scheme that is

very compatible with convolution neural networks

and time saving [25].

It is worth mentioning that the adversary nature

of GAN has been recently used to study the resilience

of machine learning models against adversarial

perturbation. In [24], Liu et at studied the potential of

adversary attacks on machine learning based EDA

approaches while considering hotspot detection as a

case study. The study showed that CNN-based

hotspot detectors can be fooled by specially crafted

SRAF insertions that can mislead the network to

predict a hotspot layout as non-hotspot. This first

study unearthed a threat that should be considered

when using machine leaning tools in EDA, thus,

urging caution and advocating for further study of the

wider security implications of deep learning in this

field [24].

4. General Takeaways

The aforementioned applications of generative

learning in the field of DFM represent a part of a new

paradigm in the field based on machine learning. In

general, the driving motivation for this new path is

enhancing performance and speeding up design

closure. However, generative learning has left its

unique characteristics.

• Design Representation:

When using generative learning, design

representations at different stages are cast into visual

context, i.e., designs or layouts are treated as images.

While such visual representations are not trivial in

some cases, as in the case of the SRAF encoding

scheme in Section 3.2, it has been shown that, if an

adequate representation can be obtained, a wide range

of models and tools are available to handle different

applications. In practice, new machine learning

models for computer vision are developed

continuously and generative learning is one of the

latest. Thus, providing competent visual

representation for designs at different levels is the first

step towards using the resourceful machine learning

toolbox for computer vision as shown in the examples

presented in Section 3.

• Models as Optimizers:

While conventional machine learning models are

viewed in the scope of regression and classification

tools, generative learning has taken that one step

further to act as a stand-alone simulator as in

LithoGAN (Section 3.3) and as an optimizer in both

GAN-OPC and GAN-SRAF (Sections 3.1 and 3.2). In

practice, these generative models are now generating

solutions that can parallel those of conventional tools

and are doing that much faster. For example, with

1800× speedup in lithography simulation, LithoGAN

is redefining the role of machine learning in

lithography. Therefore, it is expected that such models

will be introduced into different early exploration

Alawieh et al.: Generative Learning in VLSI Design for Manufacturability: Current Status and Future Directions

J. Microelectron. Manuf. 2, 19020401 (2019) 10

stages in DFM resulting in orders of magnitude

speedup compared to traditional approaches; hence,

revolutionizing the way the field is perceived.

• Adversary in ML for DFM:

While most generative adversarial models have

used adversary towards good ends, it is important to

keep in mind that it is still called adversarial for a

reason, and it can be used towards different ends. In

Section 3.5, the adversary threat for ML models was

briefly introduced, and this topic is expected to attract

more attention as adoption of ML techniques expands.

Here, generative models can be used to build more

resilient ML models that are capable of withstanding

adversarial attacks.

5. Conclusion

This paper reviews the recent generative

learning applications in various design for

manufacturability tasks, such as lithography modeling,

hotspot detection, and mask optimization. While

conventional approaches to address these tasks are

data intensive and computationally expensive,

generative learning is emerging as an alternative

framework that can substitute them while improving

performance and/or efficiency, eventually

contributing to fast design closure and good

manufacturability. In fact, generative learning has

stepped out of the conventional frame for ML models

to act as a data-driven optimizer or simulator that can

significantly speedup design closure. This paves the

way for a new paradigm of design automation with

limited dependence on expensive traditional

simulation and optimization tools.

With the proven success in many DFM

applications, wider adoption of these models still

faces some challenges:

• requirement of high resolution in many

accuracy demanding applications;

• adequate visual representation for target designs

and applications;

• requirement of large initial training datasets;

• requirement of framework for data re-use when

technology changes.

These challenges are already under spotlight for

research in machine learning where new solutions are

being developed to overcome them in ML

applications in different fields. With more success at

this front in the near future, wider adoption of

generative learning in EDA, and DFM in particular, is

expected.

Acknowledgments

This work is supported in part by NSF under

Award No. 1718570 and Kioxia.

References

[1] M. Fatima and M. Pasha, “Survey of machine learning

algorithms for disease diagnostic,” Journal of Intelligent

Learning Systems and Applications, vol. 9, no. 01, p. 1,

2017.

[2] A. Alawieh, F. Zaraket, M. B. Alawieh, A. R. Chatterjee,

and A. Spiotta, “Using machine learning to optimize

selection of elderly patients for endovascular

thrombectomy,” Journal of neurointerventional surgery, pp.

neurintsurg–2018, 2019.

[3] P. D. Yoo, M. H. Kim, and T. Jan, “Machine learning

techniques and use of event information for stock market

prediction: A survey and evaluation,” in International

Conference on Computational Intelligence for Modelling,

Control and Automation and International Conference on

Intelligent Agents, Web Technologies and Internet

Commerce (CIMCAIAWTIC’06), vol. 2. IEEE, 2005, pp.

835–841.

[4] Y. Lin, M. B. Alawieh, W. Ye, and D. Pan, “Machine

learning for yield learning and optimization,” in Proc. ITC,

2018

[5] W. Shi, M. B. Alawieh, X. Li, and H. Yu, “Algorithm

and hardware implementation for visual perception system

in autonomous vehicle: A survey,” Integration, vol. 59, pp.

148–156, 2017.

[6] H. Yu, W. Shi, M. B. Alawieh, C. Yan, X. Zeng, X. Li,

and H. Yu, “Efficient statistical validation of autonomous

driving systems,” in Safe, Autonomous and Intelligent

Vehicles. Springer, 2019, pp. 5–32.

[7] B. D. Argall, S. Chernova, M. Veloso, and B. Browning,

“A survey of robot learning from demonstration,” Robotics

and autonomous systems, vol. 57, no. 5, pp. 469–483, 2009.

[8] C. Bishop, Pattern Recognition and Machine Learning.

Springer, 2006.

[9] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.

Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,

“Generative adversarial nets,” in Proc. NIPS, 2014, pp.

2672–2680.

[10] M. Mirza and S. Osindero, “Conditional generative

adversarial nets,” arXiv preprint arXiv:1411.1784, 2014.

[11] C. Doersch, “Tutorial on variational autoencoders,”

arXiv preprint arXiv:1606.05908, 2016.

[12] D. P. Kingma and M. Welling, “Auto-encoding

variational bayes,” arXiv preprint arXiv:1312.6114, 2013.

[13] L. Perez and J. Wang, “The effectiveness of data

augmentation in image classification using deep learning,”

arXiv preprint arXiv:1712.04621, 2017.

[14] D. Nie, R. Trullo, J. Lian, C. Petitjean, S. Ruan, Q.

Wang, and D. Shen, “Medical image synthesis with context-

aware generative adversarial networks,” in International

Conference on Medical Image Computing and Computer-

Assisted Intervention. Springer, 2017, pp. 417–425.

[15] W. Ye, M. B. Alawieh, Y. Lin, and D. Z. Pan,

“LithoGAN: Endto-end lithography modeling with

generative adversarial networks,” in Proceedings of the 56th

Alawieh et al.: Generative Learning in VLSI Design for Manufacturability: Current Status and Future Directions

J. Microelectron. Manuf. 2, 19020401 (2019) 11

Annual Design Automation Conference 2019. ACM, 2019,

p. 107.

[16] C. Yu and Z. Zhang, “Painting on placement:

Forecasting routing congestion using conditional generative

adversarial nets,” in DAC, 2019.

[17] M. B. Alawieh, W. Li, Y. Lin, L. Singhal, M. Iyer, and

D. Z. Pan, “High-definition routing congestion prediction

for large-scale FPGAs,” in ASPDAC, 2020.

[18] B. Xu, Y. Lin, X. Tang, S. Li, L. Shen, N. Sun, and D.

Z. Pan, “WellGAN: Generative-adversarial-network-

guided well generation for analog/mixed-signal circuit

layout,” in Proceedings of the 56th Annual Design

Automation Conference 2019. ACM, 2019, p. 66.

[19] K. Zhu, M. Liu, Y. Lin, B. Xu, S. Li, X. Tang, N. Sun,

and D. Z. Pan, “GeniusRoute: A new analog routing

paradigm using generative neural network guidance,” in

Proc. ICCAD, 2019.

[20] Y.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K.

Lim, “GANCTS: A generative adversarial framework for

clock tree prediction and optimization,” in Proc. ICCAD,

2019.

[21] M. B. Alawieh, Y. Lin, Z. Zhang, M. Li, Q. Huang, and

D. Z. Pan, “GAN-SRAF: Sub-resolution assist feature

generation using conditional generativeadversarial

networks,” in Proc. DAC, 2019.

[22] H. Yang, S. Li, Y. Ma, B. Yu, and E. F. Young, “Gan-

opc: mask optimization with lithography-guided generative

adversarial nets,” in Proceedings of the 55th Annual Design

Automation Conference. ACM, 2018, p. 131.

[23] H. Yang, P. Pathak, F. Gennari, Y.-C. Lai, and B. Yu,

“DeePattern: Layout pattern generation with transforming

convolutional auto-encoder,” in Proceedings of the 56th

Annual Design Automation Conference 2019. ACM, 2019,

p. 148.

[24] K. Liu, H. Yang, Y. Ma, B. Tan, B. Yu, E. F. Young,

R. Karri, and S. Garg, “Are adversarial perturbations a

showstopper for ml-based cad? a case study on cnn-based

lithographic hotspot detection,” arXiv preprint

arXiv:1906.10773, 2019.

[25] R. Chen, W. Zhong, H. Yang, H. Geng, X. Zeng, and

B. Yu, “Faster region-based hotspot detection,” in

Proceedings of the 56th Annual Design Automation

Conference 2019. ACM, 2019, p. 146.

[26] D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J.

Kim, “A survey of deep learning-based network anomaly

detection,” Cluster Computing, pp. 1–13, 2017.

[27] P. Druzhkov and V. Kustikova, “A survey of deep

learning methods and software tools for image classification

and object detection,” Pattern Recognition and Image

Analysis, vol. 26, no. 1, pp. 9–15, 2016.

[28] A. Radford, L. Metz, and S. Chintala, “Unsupervised

representation learning with deep convolutional generative

adversarial networks,” CoRR.

[29] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-

to-image translation with conditional adversarial networks,”

arxiv, 2016.

[30] N. Jia and E. Y. Lam, “Machine learning for inverse

lithography: using stochastic gradient descent for robust

photomask synthesis,” Journal of Optics, vol. 12, no. 4, pp.

045 601:1–045 601:9, 2010.

[31] K.-S. Luo, Z. Shi, X.-L. Yan, and Z. Geng, “SVM

based layout retargeting for fast and regularized inverse

lithography,” Journal of Zhejiang University SCIENCE C,

vol. 15, no. 5, pp. 390–400, 2014.

[32] Y. Lin, X. Xu, J. Ou, and D. Z. Pan, “Machine learning

for mask/wafer hotspot detection and mask synthesis,” in

Photomask Technology, vol. 10451. International Society

for Optics and Photonics, 2017, p. 104510A.

[33] S. Miyama, K. Yamamoto, and K. Koyama, “Large-

area optical proximity correction with a combination of

rule-based and simulation-based methods,” Japanese

Journal of Applied Physics, vol. 35, no. 12S, p. 6370, 1996.

[34] T. Matsunawa, B. Yu, and D. Z. Pan, “Optical

proximity correction with hierarchical bayes model,”

Journal of Micro/Nanolithography, MEMS, and MOEMS,

vol. 15, no. 2, pp. 021 009–021 009, 2016.

[35] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G.

Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A.

Borchers et al., “In-datacenter performance analysis of a

tensor processing unit,” arXiv preprint arXiv:1704.04760,

2017, tPU.

[36] G. E. Hinton and R. R. Salakhutdinov, “Reducing the

dimensionality of data with neural networks,” science, vol.

313, no. 5786, pp. 504–507, 2006.

[37] I. Goodfellow, Y. Bengio, and A. Courville, Deep

learning. MIT press, 2016.

[38] J.-R. Gao, X. Xu, B. Yu, and D. Z. Pan, “MOSAIC:

Mask optimizing solution with process window aware

inverse correction,” in Proc. DAC, 2014, pp. 52:1–52:6.

[39] X. Xu, Y. Lin, M. Li, T. Matsunawa, S. Nojima, C.

Kodama, T. Kotani, and D. Z. Pan, “Sub-Resolution Assist

Feature Generation with Supervised Data Learning,” IEEE

TCAD, vol. PP, no. 99, 2017.

[40] J.-H. Jun, M. Park, C. Park, H. Yang, D. Yim, M. Do,

D. Lee, T. Kim, J. Choi, G. Luk-Pat et al., “Layout

optimization with assist features placement by model based

rule tables for 2x node random contact,” in Proc. SPIE, 2015,

pp. 94 270D–94 270D.

[41] C. Kodama, T. Kotani, S. Nojima, and S. Mimotogi,

“Sub-resolution assist feature arranging method and

computer program product and manufacturing method of

semiconductor device,” Aug. 19 2014, US Patent 8,809,072.

[42] K. Sakajiri, A. Tritchkov, and Y. Granik, “Model-

based sraf insertion through pixel-based mask optimization

at 32nm and beyond,” in Proc. SPIE, 2008, pp. 702 811–

702 811.

[43] R. Viswanathan, J. T. Azpiroz, and P. Selvam,

“Process optimization through model based sraf printing

prediction,” in Proc. SPIE, 2012, pp. 83 261A–83 261A.

[44] B.-S. Kim, Y.-H. Kim, S.-H. Lee, S.-I. Kim, S.-R. Ha,

J. Kim, and A. Tritchkov, “Pixel-based sraf implementation

for 32nm lithography process,” in Proc. SPIE, 2008, pp. 71

220T–71 220T.

[45] B. Wu, H. Duan, Z. Liu, and G. Sun, “SRPGAN:

perceptual generative adversarial network for single image

super resolution,” CoRR, vol. abs/1712.05927, 2017.

[46] X. Zhou, A. Karpur, C. Gan, L. Luo, and Q. Huang,

“Unsupervised domain adaptation for 3d keypoint

prediction from a single depth scan,” CoRR.

[47] S. Tulsiani and J. Malik, “Viewpoints and keypoints,”

Proc. CVPR, pp. 1510–1519, 2015.

[48] A. Newell, K. Yang, and J. Deng, “Stacked hourglass

networks for human pose estimation,” in ECCV, 2016.

[49] J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint

training of a convolutional network and a graphical model

for human pose estimation,” in NIPS, 2014.

[50] C. Mack, Fundamental Principles of Optical

Lithography: The Science of Microfabrication. John Wiley

& Sons, 2008.

[51] H. Levinson, “Principles of Lithography,” in Proc.

SPIE, pp. 261–263.

Alawieh et al.: Generative Learning in VLSI Design for Manufacturability: Current Status and Future Directions

J. Microelectron. Manuf. 2, 19020401 (2019) 12

[52] T. M. A.-M. G. M. E. John Randall, Kurt G. Ronse,

“Variable-threshold resist models for lithography

simulation,” in Proc. SPIE, vol. 3679, 1999.

[53] Y. S. Seongbo Shim, Suhyeong Choi, “Machine

learning-based 3d resist model,” in Proc. SPIE, vol. 10147,

2017.

[54] T. M. S. N. Yuki Watanabe, Taiki Kimura, “Accurate

lithography simulation model based on convolutional neural

networks,” in Proc. SPIE, vol. 10147, 2017.

[55] Y. Lin, M. Li, Y. Watanabe, T. Kimura, T. Matsunawa,

S. Nojima, and D. Z. Pan, “Data efficient lithography

modeling with transfer learning and active data selection,”

IEEE TCAD, 2018.

[56] J. Kim and M. Fan, “Hotspot detection on Post-OPC

layout using full chip simulation based verification tool: A

case study with aerial image simulation,” in Proc. SPIE, vol.

5256, 2003.

[57] E. Roseboom, M. Rossman, F.-C. Chang, and P. Hurat,

“Automated full-chip hotspot detection and removal flow

for interconnect layers of cell-based designs,” in Proc. SPIE,

vol. 6521, 2007.

[58] W. Ye, Y. Lin, M. Li, Q. Liu, and D. Z. Pan,

“LithoROC: Lithography hotspot detection with explicit roc

optimization,” in Proceedings of the 24th Asia and South

Pacific Design Automation Conference. ACM, 2019, pp.

292–298.

[59] W. Ye, M. B. Alawieh, M. Li, Y. Lin, and D. Z. Pan,

“Litho-GPA: Gaussian process assurance for lithography

hotspot detection,” in Proc. DATE, 2019.

[60] H. Yang, J. Su, Y. Zou, B. Yu, and E. F. Y. Young,

“Layout hotspot detection with feature tensor generation

and deep biased learning,” in Proc. DAC, 2017, pp. 62:1–

62:6.

[61] J. Chen, Y. Lin, Y. Guo, M. Zhang, M. B. Alawieh, and

D. Z. Pan, “Lithography hotspot detection using a double

inception module architecture,” Journal of

Micro/Nanolithography, MEMS, and MOEMS, vol. 18, no.

1, p. 013507, 2019.

